China Best Sales China Manufacturer CNC Machining/Machined Mould Molded Plastic Injection Molding Parts injection molding aluminum parts

Product Description



Quick Details

Precision Auto Injection Mould moulded cnc Machine Custom plasitc injection molding Parts
Precision Auto,; Injection Mould molding Machine,; Machining Custom plasitc  Parts 
Precision Auto,; Injection Mould molding Custom,;  Plastic ABS,;PS,;NYLON Parts OEM
China factory OEM custom CNC Machined Mould Plastic Injection Molding Parts
China manufacturer CNC Machining Machined Mould molded Plastic Injection Molding Parts


Type:; Other Home Appliance PartsPlace of Origin:; ZheJiang ,; China (Mainland);Brand Name:; CDX or customizedModel Number:; CDX-K141001Material:; ABS,; PC,; PS,; PP,; PVC,; TPR,; TPU,; TPE,; etcSurface Treatment:; Color Painting,; Texture,; Silk Printing,; as you requiredCertificate:; FDA,; RoHSMould Leadtime:; 3-6 WeeksMould Life:; 100,; 000-1,; 000,; 000 ShotsInjection capacity:; 120tons-850tonsStandard:; ISO 9001:;2000Applied Software:; Pro/E,; Auto CAD 2000,; CZPT work 2001,; CAXA,; UG,; CAD,; CAMProduction Capacity:; 500,; 000 pcs/monthApplied Industry:; auto parts,; household application,; furniture accessory,; etcPackaging & Delivery

Packaging Details:; Standard Export Packing or as Per Request
Delivery Detail:; 3-6 weeks


Product Name:; Plastic Injection for Home Appliances Parts


u  Precision Injection Molding:; From design consultancy & prototype tooling to high-volume world-class production

u  Parts are widely used:; Industrial,; Automotive,; Electronics & Medical




Technical Skills – Development,; Design Skills

l  Design Consultation & Assistance

l  Pro/E,; CAD/CAM/CAE including CZPT Works(TM); and mold flow analysis

l  Material Selection Assistance

l  Quick turn-around prototype support

l  Secondary Operations including machining,; welding & assembly




Molding – High Precision,; High Concern

l  Plastic Decorating:; In-Mold Decorating (in-mold labeling);,; pad printing & hot stamping

l  40 Molding machines from 80TONS to 1400TONS

l  High precision molding from medical to fiber optics components


Secondary Operations – Value Added Service

l  Pad Printing

l  Sonic Welding

l  Assembly & Packaging

Injection Molding Capability

u  Material:; PA,; PA6,; PA+FG,; ABS,; FR ABS,; POM,; PC,; PS,; PP,; PVC,; TPR,; TPU,; TPE,; HDPE,; PMMA etc.;

u  Mold Cavity:; Single or Multi-cavity

u  Mold Base:; LKM or Equivalent Standard mold base

u  Core Steel:; NAK80 prehardened steel,; 718,; 718H,; P20,; S136 etc.;

u  Injection Machine Size:; 40sets range from 80TONS to 1400TONS

u  Max Mold Size:; 1500mm x 1300mm

u  Product Unit Weight:; From 0.;1gram to 10,;000grams

u  Tooling Lead-time:; 3-7 weeks

u  Production Lead-time:; 2-4 weeks

u  Mold Life:; 50,;000shots to 500,;000shots

u  Surface Treatment:; Chrome Plating,; Silk-Printing,; Laser Etching,; Texture,; Color Painting,; etc.;


Material Name




Lightweight,; Heat Resistance,; High Chemical Resistance,; Scratch Resistance,; Natural Waxy Appearance,; Tough and Stiff,; Low Cost

Automobile (Bumpers,; Covers,; Trim);,; Bottles,; Caps,; Crates,; Handles,; Housings.;


Strong,; Rigid,; Excellent Fatigue Resistance,; Excellent Creep Resistance,; Chemical Resistance,; Moisture Resistance,; Naturally Opaque White,; Low/Medium Cost

Bearings,; Cams,; Gears,; Handles,; Plumbing Components,; Rollers,; Rotors,; Slide Xihu (West Lake) Dis.s,; Valves


Very Tough,; Temperature Resistance,; Dimensional Stability,; Transparent,; High Cost

Automobile (Panels,; Lenses,; Consoles);,; Bottles,; Containers,; Housings,; Light Covers,; Reflectors,; Safety Helmets and Shields


Tough,; Very High Chemical Resistance,; Clear,; Very High Cost



Strong,; Flexible,; Low Mold Shrinkage (Tight Tolerance);,; Chemical Resistance,; Applicable for Electroplating,; Naturally Opaque,; Low/Medium Cost

Automobile (Consoles,; Panels,; Trim,; Vents);,; Boxes,; Gauges,; Housings,; Inhalers,; Toys


High Strength,; Fatigue Resistance,; Chemical Resistance,; Low Creep,; Low Friction,; Almost Opaque/White,; Medium/High Cost

Bearings,; Bushings,; Gears,; Rollers,; Wheels


High Strength,; Fatigue Resistance,; Chemical Resistance,; Low Creep,; Low Friction,; Almost Opaque/White,; Medium/High Cost

Handles,; Levers,; Small Housings,; Zip Ties


Rigid,; Heat Resistance,; Chemical Resistance,; Medium/High Cost

Automobile (Filters,; Handles,; Pumps);,; Bearings,; Cams,; Electrical Components (Connectors,; Sensors);,; Gears,; Housings,; Rollers,; Switches,; Valves


Tough,; Flexible,; Flame Resistance,; Transparent or Opaque,; Low Cost

Electrical Insulation,; Household wares,; Medical Tubing,; Shoe Soles,; Toys


Tough and Stiff,; Excellent Chemical Resistance,; Natural Waxy Appearance,; Low Cost

Chair Seats,; Housings,; Covers,; Containers


Rigid,; Brittle,; Scratch Resistance,; Transparent,; Optical Clarity,; Low/Medium Cost

Display Stands,; Knobs,; Lenses,; Light Housings,; Panels,; Reflectors,; Signs,; Shelves,; Trays


Our Advantage :;

ISO9001:;2008 certificate

We own a spare parts factory in HangZhou

More than 8 years’ export experience  in various spare parts

The best after-sales sevice

Small order can acceptable

Both standard and non-standard parts are welcomed

We value that the better quality and service will win the market 



Condition: New
Certification: ISO9001
Standard: DIN, ASTM
Customized: Customized
Material: Plastic
Application: Metal Recycling Machine, Metal Cutting Machine, Metal Processing Machinery Parts, Metal forging Machinery


Customized Request

Injection molded partt

Importance of Wall Thickness in Injection Molded Parts

When designing injection molded parts, it is important to keep the wall thickness uniform. Uneven wall thickness can lead to warping and sinking. To minimize these problems, injection molded parts should have a wall thickness of 40 to 60 percent of the adjacent wall. The thickness of the wall should also fit within the range recommended for the resin that is being used. If the wall thickness is too thick, it should be cored out. Unnecessary wall thickness alters the dimensions of the part, reduces its strength, and may require post-process machining.

Designing out sharp corners on injection molded parts

Designing out sharp corners on injection molded components can be a challenging process. There are several factors to consider that impact how much corner radius you need to design out. A general rule is to use a radius that is about 0.5 times the thickness of the adjacent wall. This will prevent sharp corners from occurring on a part that is manufactured from injection molding.
Sharp corners can obstruct the flow of plastic melt into the mold and create flaws on parts. They can also cause stress concentration, which can compromise the strength of the part. To avoid this, sharp corners should be designed out. Adding radii to the corners is also an effective way to avoid sharp angles.
Another common problem is the presence of overhangs. Injection molding parts with overhangs tend to have side-action cores, which enter from the top or bottom. As a result, the cost of making these parts goes up quickly. Moreover, the process of solidification and cooling takes up more than half of the injection molding cycle. This makes it more cost-effective to design parts with minimal overhangs.
Undercuts on injection molded parts should be designed with a greater radius, preferably one or two times the part’s wall thickness. The inside radius of corners should be at least 0.5 times the wall thickness and the outside radius should be 1.5 times the wall thickness. This will help maintain a consistent wall thickness throughout the part. Avoiding undercuts is also important for easy ejection from the mold. If undercuts are present, they can cause a part to stick inside the mold after it has cooled.
Keeping wall thickness uniform is another important issue when designing plastic parts. Inconsistent wall thickness will increase the chance of warping and other defects.

Adding inserts to injection molded parts

Adding inserts to injection molded parts can be a cost-effective way to enhance the functionality of your products. Inserts are usually manufactured from a wide range of materials, including stainless steel, brass, aluminum, bronze, copper, Monel, nickel/nickel alloy, and more. Selecting the right material for your parts depends on the application. Choosing the correct material can help prevent defects and keep production cycles short. The insert material should be durable and resist deformation during the injection molding process. It must also be thin enough to provide the desired grip and have a proper mold depth.
The benefits of adding inserts to injection molded parts include the ability to design parts with unique shapes. These parts can be aesthetically pleasing, while still remaining durable and resistant to wear and tear. In addition, insert molding allows products to have a good external finish. In addition to being cost-effective, insert molding is considered a more efficient manufacturing method than other conventional methods.
Adding inserts to injection molded parts is an excellent way to enhance the strength and performance of your products. There are many different types of inserts, including threaded nuts, bushings, pins, and blades. Some types are even available with knurled outer surfaces that help them adhere to plastic.
In addition to being cost-effective, insert molding is environmentally friendly and compatible with many types of materials. Typical inserts are made of metal or plastic. Depending on the application, stiffening inserts may also be made from wood.

Importance of uniform wall thickness

Injection molded partThe uniformity of wall thickness is an essential factor in the plastic injection molding process. It not only provides the best processing results, but also ensures that the molded part is consistently balanced. This uniformity is especially important for plastics, since they are poor heat conductors. Moreover, if the wall thickness of an injection molded part varies, air will trap and the part will exhibit a poorly balanced filling pattern.
Uniform wall thickness also helps reduce shrinkage. Different materials have different shrinkage rates. For instance, thick parts take longer time to cool than thin ones. As the part’s thickness increases, cooling time doubles. This relationship is due to the one-dimensional heat conduction equation, which shows that heat flows from the center of the part toward the cooling channel. However, this relationship does not hold for all types of plastics.
The general rule for maintaining uniform wall thickness in injection molded parts is that walls should be no thicker than 3mm. In some cases, thicker walls can be used, but they will significantly increase production time and detract from the part’s aesthetic appeal and functionality. Furthermore, the thickness of adjacent walls should be no thicker than 40-60% of each other.
The uniformity of wall thickness is critical to the overall quality and efficiency of the injection molding process. An uneven wall thickness can cause twisting, warping, cracking, and even collapse. A uniform wall thickness also reduces residual stress and shrinkage. Injection molded parts are more stable when the wall thickness is uniform.
An injection molded part with thick walls can be problematic, especially when the molded parts are shaped like a cube. A non-uniform wall thickness can result in problems and costly retooling. Fortunately, there are solutions to this problem. The first step is to understand the problem areas and take action.

Using 3D printing to fabricate molds

splineshaftThe use of 3D printed molds allows manufacturers to manufacture a wide range of injection molded parts. However, 3D-printed molds are not as strong as those made from metallic materials. This means that they do not withstand high temperatures, which can degrade them. As such, they are not suitable for projects that require smooth finishing. In order to reduce this risk, 3D-printed molds can be treated with ceramic coatings.
Using 3D printing to fabricate injection molds can help reduce costs and lead times, allowing manufacturers to bring their products to market faster. This process also has the advantage of being highly efficient, as molds made using 3D printing can be designed to last for many years.
The first step in fabricating an injection mold is to design a design. This design can be complex or simple, depending on the part. The design of the mold can be intricate. A simple example of a mold would be a red cup, with an interior and exterior. The interior portion would have a large cone of material protruding from the other side.
Injection molding is an effective way to produce thousands of parts. However, many engineering companies do not have access to expensive 3D printers. To solve this problem, companies should consider using outside suppliers. In addition to speeding up the manufacturing process, 3D printing can reduce the cost of sample parts.
Plastic injection molding still remains the most popular method for high volume production. However, this process requires a large up-front capital investment and takes a while to adapt. Its advantages include the ability to use multiple molds at once, minimal material wastage, and precision dosing. With an increasing number of materials available, 3D printing can be a smart option for companies looking to manufacture a variety of plastic parts.
China Best Sales China Manufacturer CNC Machining/Machined Mould Molded Plastic Injection Molding Parts   injection molding aluminum partsChina Best Sales China Manufacturer CNC Machining/Machined Mould Molded Plastic Injection Molding Parts   injection molding aluminum parts
editor by CX 2023-04-23